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ABSTRACT

We present a new machine learning driven (ML) source-finding tool for next generation radio surveys that performs fast source
extraction on a range of source morphologies at large dynamic ranges with minimal parameter tuning and post processing. The
field of radio astronomy is on the brink of groundbreaking scientific advances with the construction of the Square Kilometre
Array (SKA) radio telescope. Reaching science goals with current radio telescopes, which have modest data products compared
to those promised by the SKA, is inhibited by a lack of accurate and automated source-finding techniques. We have developed a
novel source-finding method, ContinUNet, powered by an ML segmentation algorithm, U-Net, that has proven highly effective
and efficient when tested on SKA precursor data sets. Our model was trained and tested on simulated radio continuum data from
SKA Science Data Challenge 1 and proved comparable to the state-of-the-art source-finding methods, PyBDSF and ProFound,
in terms of recovery of the source population and their characteristics. ContinUNet was then tested on the MIGHTEE Early
Science data without retraining and was able to extract point sources and extended sources with equal ease; processing a 1.6
deg? field in <13 s on a supercomputer and ~2 min on a personal laptop. We were able to associate components of extended
sources without manual intervention due to the powerful inference capabilities learnt within the network. These advances make

ContinUNet a promising tool for enabling science in the upcoming SKA era.
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1 INTRODUCTION

For many years radio telescopes have been used study Galactic and
extragalactic processes through the thermal and non-thermal emis-
sion that they produce. With modern instruments like the Square
Kilometre Array (SKA) pathfinder Low-Frequency Array (LOFAR,;
van Haarlem et al. 2013) and precursor MeerKat (Jonas et al. 2018),
we have been able to study the Universe in greater depth than ever
before. However, the data obtained from these surveys are becoming
increasingly difficult to analyse due to their large size, making con-
ventional source-finding techniques impractical. These conventional
techniques may also make incorrect assumptions about the proper-
ties of the sources, potentially impacting the accuracy of statistical
estimations of cosmological and astrophysical quantities.

Radio emission is a primary tracer of the star formation history
in galaxies (e.g. Jarvis et al. 2014) via thermal emission in ionized
hydrogen (HII) regions and non-thermal synchrotron radiation from
supernova remnants. Deep radio surveys can detect radio emission
from very distant star forming galaxies (SFGs) at different frequen-
cies to track how they are evolving over time (e.g. Smith et al. 2021).
Studying radio properties of these galaxies helps us understand the
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underlying mechanisms driving star formation throughout cosmic
history. Active galactic nuclei (AGN) also produce radio emission,
both from accretion onto the core and the generation of jets. Deep
radio surveys can trace AGN activity to even higher redshifts, allow-
ing us to understand how the source populations evolve with cosmic
time (e.g. Smolcic et al. 2014; Whittam et al. 2023). Observations
at multiple frequencies additionally provide information on the un-
derlying emission mechanisms and how these sources age (Harwood
et al. 2017).

In order to leverage the true science potential of modern radio
surveys, sources must be extracted from the image data products and
their parameters measured. The current state-of-the-art techniques
used for source extraction in radio astronomy are PyBDSF (Mohan
et al. 2015) and ProFound (Robotham et al. 2018). PyBDSF identi-
fies sources in radio interferometric images by fitting a 2D Gaussian
model to each component of emission. The algorithm involves a se-
ries of steps including background subtraction, island identification,
Gaussian fitting, and deblending of overlapping sources. PyBDSF
has been applied frequently across radio astronomical applications,
for example for source-finding in the LOFAR Two-metre Sky Survey
(Shimwell et al. 2017). ProFound detects sources in astronomical
images by identifying objects as groups of contiguous pixels above
a certain threshold. ProFound was initially developed for optical as-
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tronomical data and used for measuring photometry in the Deep
Extragalactic Visible Legacy Survey (DEVILS) data (Davies et al.
2018). ProFound was subsequently applied to radio data, Hale et al.
(2019) performed source-finding and parameter extraction with Pro-
Found on observations of the XMM-LSS field taken with the Very
Large Array (VLA). Both methods provide tools for visual inspection
and verification of the detected sources.

As the problem of analyzing large datasets will become even more
significant in the SKA era, the SKA Observatory (SKAO) has ini-
tiated Science Data Challenges (SDC) to test new approaches that
can handle the massive amount of SKA data whilst dealing with re-
alistic image defects. Considering the large volumes of image data,
it is an appropriate application for deep learning image segmenta-
tion methods. There have already been some applications of ML to
the problem of source extraction in radio data in particular. Con-
voSourck (Lukic et al. 2019) uses a Convolutional Neural Network
(CNN) to perform source extraction in the Science Data Challenge 1
(SDC1) data. Similarly, DEepSoURcE (Sadr et al. 2018) uses a CNN
to perform point source object detection. Both ConvoSource and
DEeepPSoOURCE are able to extract point sources from radio data, but
it is not evident that they are capable of extracting extended sources
from radio data. Sortino et al. (2023) performed benchmarking on
deep learning methods for object detection and segmentation in a
recent review, which includes various deep learning segmentation
methods such as U-Net. This review presents a brief analysis of a
comprehensive list of different methods, but does not perform any
extensive analysis or application of these techniques. More recently
Riggietal. (2023) published a source extraction tool, CEASAR-MRCNN,
a framework built around a Mask R-CNN trained using Evolutionary
Map of the Universe (EMU; Norris et al. 2011) survey data from the
Australian Square Kilometre Array Pathfinder (ASKAP; Hotan et al.
2021) radio telescope, which showed promising results.

It is widely accepted that thousands of annotated training samples
are required for successful training of deep neural-networks (Ron-
neberger et al. 2015). However, U-Net is a deep method for image
segmentation that can be trained on very few labelled images. U-Net
is a segmentation algorithm taken from the field of biomedical imag-
ing and was originally developed for segmenting electron microscopy
data. U-Net is based on an encoder-decoder architecture, much like
the Auto Encoder (AE) defined by Goodfellow et al. (2016) and
Variational Autoencoder (VAE) devoloped by Kingma & Welling
(2013), which have proven very effective for feature extraction in im-
age data. The contracting path (encoder) captures context or features
within the image and a symmetric expanding path (decoder) en-
ables precise localisation. In Wang et al. (2023), a Vector Quantised
VAE based method was applied to 3D magnetic resonance imaging
(MRI) data images to detect anomalies in brain scans with results
that outperform state-of-the-art methods. Yasutomi & Tanaka (2023)
presented a Contrastive Conditioned VAE for efficiently extracting
style features from text images in order to classify fonts. Meissen
et al. (2022) used a feature-mapping function as a pre-proccesing
step for unsupervised anomaly detection with an AE in brain MRI
data. It is quickly evident that encoder-decoder architectures can be
applied to a variety of image segmentation and classification cases
with extremely promising results. U-Net has already been used for
a variety of astrophysical research cases with proven success. For
example, Zhou et al. (2022) applied ResUNet to extract foreground
contamination in carbon monoxide intensity maps. A variation on U-
Net, SegU-Net, presented in Bianco et al. (2023) was used to identify
neutral and ionized regions in simulated 21-cm signal data. In Gupta
& Reichardt (2020) the mResUNet was applied to simulated cosmic
microwave background signals to extract the Sunyaev-Zel’dovich
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profiles and galaxy cluster masses. Makinen et al. (2020) perform
foreground removal in 21-cm intensity mapping observations using
U-Net with principle component analysis (PCA) as a pre-processing
step.

Considering the urgency for faster and more efficient source extrac-
tion methods for the extremely large datasets produced by modern
radio surveys, we present the ContinUNet framework for source-
finding in 2D radio continuum data, based on the U-Net architecture
(Ronneberger et al. 2015). We present ContinUNet in Section 2, an
end-to-end pipeline for training a U-Net model on simulated radio
continuum data and predicting source catalogues of new input data,
describing the different modules developed for source-finding. We
describe the SDC1 data set (Bonaldi & Braun 2018) used for train-
ing in Section 3, how we produce our segmentation maps for training
from the provided truth catalogues and the training process itself. We
perform an exhaustive comparison of our model with state-of-the-
art source finders PyBDSF and ProFound in Section 4 and compare
all methods to the ground truth catalogue provided with the SDC1
dataset. We extend our framework to real radio continuum data in
Section 5 and apply ContinUNet to Early Science radio continuum
data from the MeerKat International GHz Tiered Extragalactic Ex-
ploration (MIGHTEE) Survey (Jarvis et al. 2016). We are able to
perform fast source-finding, extracting source counts comparable
with those produced by the state-of-the-art source extraction meth-
ods at fast speeds. We also show examples of ContinUNet’s ability to
associate source components with no retraining, prior tuning or post
source-finding clean up. We have developed a new ML source ex-
traction method, benchmarked against state-of-the-art tools currently
used by radio astronomers for source-finding, capable of detecting
objects in large radio images with no parameter tuning and no tiling
of the input data.

2 METHODS

Image segmentation is the process of partitioning an image into areas
of interest, where a pixel-wise mask is created for each object in the
image. This provides much more information than a simple bounding
box and therefore is more suitable for this task. Semantic segmenta-
tion is a computer vision task that assigns a class label to each pixel.
Binary segmentation methods only identify one type of object in an
image. A segmentation map is an image that has every pixel labelled
by a class, that represents the features within a corresponding data
image. The segmentation maps for binary segmentation will typically
have pixel values of 1 for the object identified (positive class), and
0 for the background. In order to perform image segmentation with
ML, we require a labelled training set, consisting of data images and
corresponding segmentation maps.

2.1 ContinUNet Model Framework

We propose a new framework ContinUNet for end-to-end source
extraction from radio continuum images using U-Net architecture to
learn the intrinsic source segmentation. The ContinUNet framework
is split into modules; pre-processing, learning and inference. Raw
data is parsed into the pre-processing module to generate a training
data set. This training set is used to train the U-Net architecture,
whose weights are saved into a model for the inference module.
Pre-processed data cutouts can be parsed to the inference module
to generate predicted source catalogues for the raw data input. This
architecture is depicted in Fig. 1.
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Figure 1. Graphic depicting the modular framework of ContinUNet. Pre-
processing, learning and inference modules are described here.
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Figure 2. Graphic depicting the pre-processing module.

2.1.1 Pre-processing Module

The pre-processing module, Fig. 2 is used to convert our raw data
images to a training set of data cutouts and corresponding segmenta-
tion maps. To create the segmentation maps for our radio data cutouts
we can use source properties provided in the truth catalogues: Right
Ascension (RA), Declination (Dec), position angle and major and
minor axes. Using the location and properties of known sources we
can create masked objects on an empty array to act as image labels.
We do this by inserting elliptical masks for point sources and a more
complex segmentation for extended sources. To create the segmenta-
tion for extended sources, we find their edges using a threshold on a
cutout of the source from the data image and produce a segmentation
‘stamp’. The class of each source as provided by the data set used are
included in the segmentation map. However, only binary segmenta-
tion maps are currently produced by the model, where 0O represents
background and 1 represents a source.

The data cutout values are normalised linearly to 0 < pixel value <
1, using:

Ioriginal = Iin
Inormalised = oI (H
max ~ {min

where [ is the pixel intensity value. Normalisation is standard practice
in ML applications and is performed to ensure the training data has
a consistent scale for the network to work with, leading to faster

convergence during training. The generated cutouts and segmentation
maps are hereafter referred to as data-map pairs.
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2.1.2 Learning Module

The learning module uses a U-Net architecture, as shown in Fig. 3,
to train a model for predicting segmentation maps from input data.
The encoder has a similar architecture to a typical CNN; down-
sampling is achieved through a series of convolutional layers, max
pooling and dropout (Lecun et al. 1998). A final 1x1 convolutional
layer is applied to map the component feature vectors to a desired
number of classes. The decoder performs upsampling in the form of
transpose convolutional layers, these fulfill the role of deconvolution
and upsampling simultaneously. Feature extraction is performed in-
trinsically by the algorithm in the contracting path and features are
captured within the latent space. The encoder-decoder structure of
U-Net is similar to AEs and VAEs, except for the presence of skip
connections and no Kullback-Leibler (KL) divergence term as in the
case of VAEs. Skip connections carry context between correspond-
ing encoding/decoding layers. They are implemented in the decoder
path by concatenating the output of each layer with the output of the
corresponding encoder layer. The result of this is that the outputs
of the encoding layers are carried over to the decoding layers and
image information at different dimensions is maintained throughout
the network. The functions of the different layers represented in Fig.
3 are described below:

e ‘2DConv’: 2D convolutional layer scans over the 2D input data
with convolutional filters, summing the results into a 2D matrix of
features. The convolutional layers perform feature extraction in the
network.

e ‘BatchNorm’: Batch normalisation normalises the inputs to the
layer and is used to accelerate and stabilise the training process.
The values are normalised in batches by subtracting the mean and
dividing by the standard deviation in order to re-center and re-scale
the data.

e ‘ReLu’: activation layer with rectified linear unit (ReLu) func-
tion that introduces non-linearity in the network to alleviate the issue
of vanishing gradients. It is a popular activation function for training
deep convolutional models.

e ‘MaxPool’: 2D max pooling is a non-linear downsampling op-
eration that reduces the spatial dimensions of the data parsed to the
layer. The objective is to reduce computational complexity in the net-
work by making the representation smaller and therefore reduce the
amount of information in the image. Max pooling aids in making the
feature representations invariant to changes in scale and orientation.

e ‘Dropout’: dropout is used to prevent overfitting in neural net-
works, this is called regularisation, and involves randomly setting
some of the neurons in the layer to zero. The process improves the
accuracy of predictions for new unseen data.

e ‘2DTransConv’: 2D transpose convolutional layer is used for
upsampling in the expanding path in order to reconstruct an image
of the same size as the input data. It is the opposite of the 2D
convolutional layer.

e ‘Conc’: concatenate is used to combine tensors along a given
axis, in this case it is used to combine feature maps from encoding
layers, carried across via skip connections, with those of the corre-
sponding decoding layer. This process allows U-Net to learn multi-
scale features, where features at one scale might build upon or relate
to features at other scales and has provided significant improvements
on previous segmentation models.

Normalised data cutouts are parsed to the encoder and are reduced
to some low dimensionality space, the latent space. The latent space
captures the features within the data before it is deconvolved back
through the decoder to the original input size, this output is known as
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Figure 3. U-Net network architecture diagram made using the VISUALKERAS
Python package (Gavrikov 2020). The arrows represent skip connections. The
printed numbers are the number of tunable parameters at each of the layers,
which are adjusted throughout the training process. The input image size is
256x256, being reduced to a representation of size 16X 16 at the bottleneck.
The model is trained by parsing each training image through the architecture
and calculating the loss between the reconstructed image and the labelled
segmentation map. The loss is minimised through training epochs until the
model converges.

the reconstruction or decoded image. We use a Binary Cross Entropy
(BCE) loss function, commonly used for binary classification prob-
lems. Here we are trying to classify each pixel as either 1 (source)
or 0 (background). BCE loss measures the difference between the
predicted probabilities for each pixel and their true binary labels.
Deviation of the predicted probability distribution from the true la-
bels results in an increase in BCE loss. BCE loss is defined as:

1 N
Loce =5 (X vilog(n + (1=y)log1=30) @)
i=1

where y; is the true binary label and §; is the predicted probability
of the positive class of a pixel within some data set consisting of N
training samples. The y; log(§;) term penalises the network when
y; = 1 but §; is close to 0. Conversely, the (1 — y;) log(1 — §;) term
penalises the network when y; = 0 but y; is close to 1. The loss
is therefore the negative log likelihood of y;|¥;. During training we
minimise this loss in order to make the predicted probability for each
pixel close to the true labels.

We train with training and validation data, consisting of 744 and 96
256x256 pixel size data-map pairs respectively, to ensure the model
is not overfit. Once the model has converged, where training loss is
minimised without increase in validation loss, we stop training and
save the model. The output of the learning module is a pre-trained
model that can be used to perform inference on new data.

2.1.3 Inference Module

The inference module is given in Fig. 4. Once our model is trained
we can then generate predicted segmentation maps for our test data
set. We parse the test set into the trained model and the reconstructed
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Figure 4. Graphic depicting the inference module. Data cutouts are parsed
into the module to return a source catalogue via predictions made by the
pre-trained model output by the learning module.

images are the predicted segmentation. The predicted segmentation
is a probabilistic map of pixel values and must be converted to a
binary segmentation map via post-processing. The decoded images
are converted to binary by applying a thresholding method, selected
based on metrics discussed in Section 4. Once thresholded, we can
label each component and extract information about these regions
using the sciki-iMaGE | package. We extract the x and y pixel coor-
dinates, the major and minor axis of the source, the orientation and
the total intensity within that region. Some conversions are required
to produce the required source parameters, including correcting the
total intensity for the beam area which gives us the flux density of
a source, and converting the orientation angle to a position angle
by transforming the coordinate system of the region properties to be
consistent with a polar coordinate system.

Pixel values in radio continuum data are given in units of Jy/beam,
a conversion must be applied in order to obtain the total flux density
of sources in Jy. The total intensity of a source can be measured by
summing the pixel fluxes in that region, 3 (S p;x), which can then be
converted into a total flux density value, S;o; according to:

8 10g 2 X ORA X 5Dec
27 X bimaj X bmin

Stot(Jy) = D" (Spix) 3)
where dra and Ope. are the angular sizes of the pixels in the RA
and Dec directions respectively and bpyj and by are the major and
minor axes of the restoring beam.

3 SKA SCIENCE DATA CHALLENGE 1

This work has been carried out and tested on the SKA Science Data
Challenge 1 images (Bonaldi & Braun 2018). The dataset consists
of simulated radio continuum images taken at 3 different observing
frequencies:

I https://scikit-image.org/
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Table 1. Table of converted map sky sizes and pixel sizes for each frequency
band. The map sky size is given in degrees on a side.

Frequency (Hz)  Map Sky Size (deg)  Pixel Size (arcsec)
5.6x 108 5.50 0.600
14x10° 2.20 0.240
9.2x 10° 0.33 0.037

e 560 MHz
e 1.4GHz
e 9.2 GHz

and 3 integration times:

e 8 hours
e 100 hours
e 1000 hours

giving 9 images in total. The field of view (FoV) was selected for
each frequency such that the image covers the angular size of the pri-
mary beam for a single telescope pointing. This results in a different
map sky size for each frequency band. The size in pixels is consistent
throughout all images, at 32768 x 32768 pixels, thus a pixel corre-
sponds to a different angular size on the sky in each frequency band.
The map sky sizes and the pixel sizes are given in Table. 1 respective
to each frequency band.

Increasing the integration time increases the signal to noise of
the images resulting in more of the faint source distribution being
distinguishable from the noise, whereas sources can present quite dif-
ferently at different frequencies. The statistics of the sources within
each image therefore vary significantly with frequency and integra-
tion time. The longest integration will have a larger dynamic range in
source flux density than the the shortest. An 8 hour image may con-
tain fractionally more extended AGN than SFGs, whilst a 1000 hour
image would have more SFGs. Thus training our model on images
taken at different frequencies and integrations will help our trained
model become invariant to changes in these observing factors and
also understand how sources can appear differently with respect to
the local population depending on such factors. Examples are shown
in Fig. 5 where cutouts of the same field are taken from the 1.4 GHz
images at the three different integrations to demonstrate the variation
in the data.

A “Truth Catalogue” is provided for each frequency band, which
includes the location and properties of all sources in each image.
A “Training Catalogue” is also provided for each frequency band,
which is a filtered truth catalogue containing the subset of sources
within a region covering an area of 5% of the full image. These
sources can be used as training labels for different machine learning
applications. It is important to note that these catalogues contain a
significant number of sources below the nominal flux limit which
is of the order ~1 nJy/beam (Bonaldi et al. 2020), and cannot be
detected within the image itself. It is also worth noting that whilst
each frequency band has its own truth catalogue, this is not the case
for the different integration times. As such, the proportion of the
catalogue detectable in the 8 hour image at 1.4 GHz for example, is
not the same as that of 1000 hour 1.4 GHz image.

The sources injected into the sky images are a combination of
SFGs and AGN. Sources whose major axes are larger than 3 pixels
are considered extended, and those smaller than 3 pixels compact.
As mentioned above, pixel size depends on frequency. Thus a source
treated as extended in one continuum map may be compact in another.

There are 3 classes of object injected into the dataset:

ContinUNet 5

o Steep-spectrum AGN, including Faranoft-Riley radio galaxies
(Fanaroff et al. 1974)

e Flat-spectrum AGNs, galaxies with a compact core component
and a single lobe viewed end-on

o Star forming galaxies

The compact sources have been modelled as 2D Gaussian objects.
A library of real AGN images were used to inject the steep-spectrum
AGNSs into the data, scaled in total intensity and size, randomly
flipped or rotated and then placed at random into the images. The
flat-spectrum AGNs were added as a pair of components.

3.1 Pre-Processing

The U-Net architecture in ContinUNet’s learning module requires
enough images to adequately train on. Since the images are large
(32768x%32768 pixels), we can generate many cutouts for training.
We parse all images from the 560 MHz and 1.4 GHz observing
frequency bands to the pre-processing module described in Section
2.1.1. We currently have limited the training and testing of the model
to two frequency bands. Whilst sources appear different at different
frequencies, they possess characteristic statistical features that we
want the network to learn. Training on different integration times
and frequencies should make the model invariant to such changes
in data. Sources at 9.2 GHz are much larger and with much lower
source density. As a result, we could not find a cutout size suitable for
training the 9.2 GHz band simultaneously with the other bands that
would account for the very small and densely populated sources at one
frequency and the sparse large sources at another. It is possible to take
cutouts and resize them to train together, but we did not attempt this as
resizing images may adversely affect the morphology of sources and
introduce unwanted bias into the training set. In the future we plan
to resolve this dynamic range issue and incorporate higher frequency
bands into our training set. The images are trimmed to the area
equivalent to the 5% training set provided for that frequency band.
Each image is divided into 256X256 pixel cutouts.

We cannot include all sources from each cutout catalogue in the
segmentation maps due to many of the sources having a very low
signal-to-noise ratio (SNR), particularly very large diffuse sources
that cannot be resolved from the foreground sources. We must make
an SNR cut in the truth catalogues in order to produce segmentation
maps suitable for training. It should be noted that these segmentation
maps produced are imperfect as they do not include the full source
distribution within the image, and we must assume that the model
can not truly learn to understand what ‘background’ looks like.

3.2 Training

Once we have generated our data-map pairs, we split the data
80:10:10 for train, validation and test data sets respectively. Since
we are using cutouts from all 560 MHz and 1.4 GHz images, the
data in the different integration time images are duplicated but with
a higher signal to noise for sources. We must ensure that cutouts of
sources are not duplicated in the training and validation or training
and test. If they were to be duplicated, it would result in over fitting
to the training data, or our test set not being a true blind study. An
example of duplicated cutouts is given in Fig. 5. To solve this, we
split the data-map pairs for each image before concatenating the data
sets together. Training the images together allows us to increase our
training set size. This method gives us 744, 96 and 96 images for
training, validation and testing respectively.

We train our data using the learning module described in Section

RASTI 000, 1-17 (2023)
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Figure 5. This figure shows cutouts of the SDC1 data, taken at the same coordinates for different integrations but the same frequency. The colour scale represents
pixel intensity and is normalised between all images. These cutouts are all from the 1.4 GHz images taken (from left to right) from the 8, 100 and 1000 hour
integrations respectively. We can see here how the longer exposure time affects the signal-to-noise ratio of the sources, with much more of the source distribution
becoming apparent in the 1000 hour image and the morphology of the larger diffuse extended source becoming more clear.

2.1.2. The network is implemented using TeENsorFLow GPU. We
train on training data and validation data simultaneously to avoid over
fitting of the training data. This is done by balancing the training loss
and the validation loss, the validation loss should always decrease
with the training loss, if not the model is being over fit. We reduce
the learning rate on plateau of the validation loss and utilise early
stopping to avoid over fitting to the training data. The model is check
pointed when the validation loss is improved and this model is saved.
We reach equilibrium at 65 epochs, where validation and training
loss have both reached a plateau.

3.3 Prediction

Using the trained model output by the learning module, we can
generate predicted segmentation maps for our test data set using the
inference module described in Section 2.1.3. We use a threshold
method from SCIKIT-IMAGE to convert the predicted segmentation
into binary maps. We compared source-finding using a selection of
thresholding methods available from scIKIT-IMAGE, but settle on the
Otsu threshold (Otsu 1979) as it provides a suitable compromise
between precision, recall and association of source components.

4 RESULTS

We perform source detection on the blind test data set using the in-
ference module described in Section 2.1.3 by parsing normalised test
data cutouts to the inference module to produce binary segmentation
maps, source catalogues and contour plots.

4.1 Match Predictions to Ground Truth

In order to quantitatively assess our model’s performance we must
first determine which of our detected sources can be considered real
detections. We must match predicted sources to ground truth sources
for each cutout. Once we have matched our sources we can perform
analysis on the matched and predicted sources to understand Conti-
nUNet’s source-finding capabilities. Due to the dense population of
true sources in our cutouts, a simple nearest neighbour matching is
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not sufficient. We perform first a nearest neighbour matching on ev-
ery ground truth source to find potential candidates in the predicted
sources. The distance for this nearest neighbour matching is set as
a function of source size, this allows for more lenience on larger
sources and more strict matching on small point sources where the
source population is most confused. The detection radius,  is given
by:

r =logmasb; X 10 “4)

where a; and b; are the major and minor axes of the ground truth
source respectively. For every candidate we calculate the intersection
over union (IOU) score, this is also used as our segmentation analysis
metric later, see Section 4.6 for details. The IOU score is the total
area of intersection of two sources divided by the area of their union.
This allows us to compare the predicted position angle, major and
minor axes simultaneously and thus choose the predicted source that
most closely matches the ground truth source in location, shape and
size. We set a threshold of 0.3 for IOU score and if any ground
truth source has no candidate matches that have an IOU score above
this threshold the source is considered missed and marked as a false
negative. Matched sources are marked as true positives. Figure 6 is
a diagram depicting the algorithm used to match detections.

4.2 Method Comparison

‘We use PyBDSF and ProFound as benchmark methods to assess the
quality of our model’s performance as a source detector. We run
both PyBDSF and ProFound on our test cutouts. For PyBDSF we
use the process_image method with default parameters. We use the
MakeSegIm method from ProFound to generate the predictions. Both
methods produce source catalogues for each cutout that we perform
source matching on according to the algorithm described in Section
4.1.

We perform quantitative analysis on detected sources from all
methods. Both PyBDSF and ProFound were used with default pa-
rameters on their source-finding methods. This choice was made as
we want to test the performance of all methods as ‘out-of-the-box’
source-finding methods. Our aim is to develop a method that can be



Figure 6. Graphic depicting the source matching algorithm. The orange
ellipse in the center is the ground truth source to be matched. The dashed
circle marks the region at detection radius, r as given by Equation 4. All grey
ellipses whose centers lie within this region are predicted sources marked
as candidates. The white ellipses whose centers lie outside this radius are
predicted sources not marked as candidates for matching. The blue ellipse
is the predicted source with the highest IOU score of all the candidates and
is selected as the matched source. The intersecting area of the ground truth
source and the matched predicted source is shown in green.

run with no parameter tuning and little to no expertise required in
order to produce a source finder with optimum end user experience
and consistent and fast results.

For the comparisons we include only the results for the 1.4 GHz
1000 hour SDC1 image. We include only the 1000 hour results as
each frequency band has its own truth table, but this is not true for
each integration time. As such, true sources are included in this table
that are not detectable in the image. Thus we use the 1000 hour
image as all of the sources that are detectable in the 8 hour and
100 hour images exist in the 1000 hour image. We do see a slight
improved performance of ContinUNet over the other methods for the
shorter integration times, suggesting that ContinUNet can perform
source detection at lower SNR, but we do not include the figures for
the sake of brevity. Radio continuum at lower frequencies typically
show more extended sources, as emission at lower frequencies is
typically dominated by older electron populations. Thus comparing
performance on the 560 MHz band images would preferentially bias
each model’s ability to handle diffuse extended emission. However,
we only include results for the 1.4 GHz band as there are sufficient
extended sources within these data to demonstrate the comparison
between each model fairly whilst maintaining brevity.

We include an example of one of the test data set cutouts taken
from the 1.4 GHz and 1000 hour images with the ellipses of sources
detected by ContinUNet, ProFound and PyBDSF overplotted in Fig.
7.
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4.3 Source Population Recovery

We assess the recovery of the source population by each method using
precision, recall and F; given by Equation 5, 6 and 7 respectively,
where TP is true positive, TN is true negative, FP is false positive
and FN is false negative. Precision is defined as:

TP
TP + FP

and can be considered the same as purity, it is the proportion of
your predicted sources that are real detections. This is an important
metric for source-finding as detecting too many false positives will
reduce the purity of a sample and thus impact source counts measured
from it. A high precision also means that less clean up of predicted
catalogues is required. Recall is defined as:

Precision =

(%)

TP
TP + FN

and can be considered the same as completeness, that is the propor-
tion of the true sources that were positively identified by the model.
Recall is also an important metric for source-finding as we want to
recover as much of the source distribution in one pass as possible.
This improves the completeness of our sample and means less work
is required to recover the entire population. Fy score is defined as:

Recall = (6)

2 % Precision x Recall
1 =

(O]

Precision + Recall

and is a combination of precision and recall with both metrics
weighted the same. This metric is useful as we can consider both
the precision and recall together to give a single metric for source
population recovery. We chose Fy over Fg, where the relative im-
portance of precision and recall can be weighted accordingly, as we
consider both precision and recall to be equally important metrics for
source-finding. We give precision, recall and F; score as a function
of flux density for all methods in Fig. 8, 9 and 10 respectively.

Information about the radio source populations can be inferred by
measuring population statistics. It can be assumed that the number
of sources detected at a given flux density is an indicator of both the
properties of the emitting source population and the cosmology of
that region, since at any given flux density we see both luminous dis-
tant sources and faint local ones. Source counts are measured in radio
observations to understand the distribution of these properties in the
entire source population. The source count distribution describes the
number of sources per unit flux density. Source counts can be mea-
sured in different frequency channels to construct a picture of how
source populations in different parts of the sky are changing over
cosmic time (Mandal et al. 2020).

We calculate the differential source counts for predicted sources
and matched sources for all models. Source counts are used to quan-
tify the number of sources N within a flux density S bin per unit
steradian observed on the sky, defined as:

dN(S - .
log (_d(s )52-5) = Z ai(log §)! ®)
i=0
The source counts are Euclidean normalised, denoted as n(S)S2'5

(Hale et al. 2019). The Euclidean source counts are given for all
source predicted by each method in the 1.4 GHz 1000 hour SDC1
image in the left hand figure of Fig. 11 and for all matched sources
in the right hand figure.
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Figure 7. Example cutout taken from the 1.4 GHz 1000 hour test cutouts, with the ellipses of the sources predicted by each method overplotted in black. Left:

ContinUNet, middle: ProFound, right: PyBDSF.
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Figure 8. Precision at different flux density bins for sources detected by all
methods in the 1.4 GHz 1000 hour SDC1 image.

4.4 Centroid Location Accuracy

Accurately detecting the central coordinates of a source is key for
source-finding as any cross matching with source catalogues in other
wavelengths will be strongly impacted by inaccuracies in these val-
ues. This issue will become more apparent as we move into the era
of next generation surveys such as SKA as we expect a high source
population density in the resulting catalogues. We compare the ac-
curacy of detection of centroid location for matched sources for all
methods. The distribution of spatial distance between detections and
their matched ground truth source is shown in Fig. 12, where spatial
distance d is given by:

d =2 = xp) + (e = yp?) ©)

and x¢, y¢,Xp, yp are the image coordinates for the true and predicted
source.
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Figure 9. Recall at different flux density bins for all sources detected by all
methods in the 1.4 GHz 1000 hour SDC1 image.

4.5 Flux Density

We compare the flux density distributions for predicted and matched
sources for all methods. Accuracy in measurements of flux density
will impact source counts extracted from surveys which will in turn
impact our understanding of the distribution of AGNs and SFGs.

We compare the flux density distribution for all sources predicted
by each method to the total flux density distribution of all sources
and also the flux density distribution of matched sources predicted
by each method in Fig. 13. For matched sources we compare the
distribution of the ratio of predicted to true flux density in Fig. 14
and compare predicted versus true flux density as a 2D histogram in
Fig. 15.

4.6 10U Score

We can calculate the intersection over union (IOU) score for all
matched sources. This is a way to determine the accuracy of the
segmentation. We perform it here only on the matched sources to
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Figure 10. F1 score at different flux density bins for all sources detected by
all methods in the 1.4 GHz 1000 hour SDC1 image.

determine how accurately each method has reconstructed the shape of
the ground truth sources. Itis measured by calculating the intersecting
area of the predicted and true source segmentation, divided by the
area of the union. The union is the total area of both segmentation
minus the intersection. The distribution of IOU scores for matched
sources is shown in Fig. 16. The equation for IOU is given by:

Area of Intersection
10U = 10
Area of Union (10)

5 MIGHTEE EARLY SCIENCE DATA

Having performed extensive analysis on the test data set from SDC1,
we applied the ContinUNet framework to real radio continuum data.
We use the science ready continuum image of the COSMOS deep
field reduced by (Heywood et al. 2021) from the MIGHTEE Survey
(Jarvis et al. 2016). The image contains a wide variety of sources
from small to giant radio galaxies (Delhaize et al. 2021) and is
extremely densely populated with compact sources. There are both
low resolution/high sensitivity and high resolution/low sensitivity
images of the COSMOS field produced from the MIGHTEE survey
data. We use the low resolution image as it more sensitive, contains
more sources and has more diffuse connecting emission between
large extended sources, although the central region of the image
suffers from great confusion than the high resolution image. The low
resolution image covers an area 1.62 deg?, with an angular resolution
of 8".6, thermal noise level of 1.7uJybeam™! and has a classical
confusion limit of approximately 4.5 uJybeam™!. Whereas, the high
resolution image has an angular resolution of 5" and a 1o~ noise level
of 5.5uJybeam™ 1.

We process the MIGHTEE low resolution image with ContinUNet
and extract a source catalogue using the inference module described
in Section 2.1.3. We do not perform any tiling on the image but
process the full field in one pass. The model was not retrained for
inference on MIGHTEE data, we used the pre-trained model trained
on the simulated SDC1 data, the only modification is the threshold
method used. In the SDC1 data we use the Otsu threshold (Otsu
1979), for MIGHTEE we use the Triangle threshold method (Zack
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et al. 1977). We use this threshold due to the increased dynamic
range of this image in comparison to the test images, due to the
smaller (256x256 pixel) size of the latter compared with the full
MIGHTEE image. The lower value of the triangle threshold allows
for the connection of components of extended sources in the binary
segmentation maps.

We create a model map of sources in the image by multiplying
our binary segmentation map by the input image. The model map is
then used to create a residual image by subtracting it from the input
image. The MIGHTEE image and the residual image after removing
the contribution from the sources extracted by ContinUNet are shown
in Fig. 17. We find that ContinUNet is capable of segmenting real
radio sources without the need for retraining. A closer view of the
performance of ContinUNet on the MIGHTEE continuum image in
Fig. 18, which shows a sub section of the image at the center of
the FoV, corresponding predicted segmentation map produced by
ContinUNet and the resulting model map produced of that region.
This image sub section showcases the variation in dynamic range in
both size, brightness and complexity of sources within MIGHTEE.
The model map produced by ContinUNet clearly demonstrates the
performance of our model at managing complex data with minimal
tuning.

We calculate the Euclidean normalised source counts for sources
detected by ContinUNet above 5o using Equation 8. We compare
these counts to those of the component catalogue predicted using
PyBDSF in (Hale et al. 2022) which contains 9896 components, and
the source catalogue cross correlated with optical and near-infrared
data produced in (Whittam et al. 2023) which contains 5223 sources,
in Fig. 21. The 50 limit is determined using the confusion limit of
4.5uJy rather than the theoretical noise limit of 1.7uJy.

We also include cutouts of two complex extended sources from
the MIGHTEE image detected by ContinUNet with their segmenta-
tion boundaries over plotted in Fig. 19 and Fig. 20. These sources
are present in the cross matched catalogue (Whittam et al. 2023)
and consist of 17 and 47 associated PyBDSF components respec-
tively. These components were associated by hand through manual
intervention performed by the MIGHTEE collaboration.

5.1 Computation Time

We perform some light benchmarking for ContinUNet using the
MIGHTEE image (~1 square degree, ~120 MB, ~ 5500 square pix-
els) on a local development environment on an Apple MacBook
Pro (2.4 GHz Quad-Core Intel Core i5 Processor, 16GB 2133 MHz
LPDDR3 onboard memory) and with CPU on a supercomputer
(AMD EPYC 7702P CPU, 64 cores, 128 threads, I'TB RAM).

The processing time refers to the wall time, i.e. the time expe-
rienced by the end user when performing source-finding. This is
not the same as the total computational processing time which is
the actual processing time on every core used for each process.
The load processing time is the time taken to load the image into
memory and perform pre-processing steps such as reshaping the ar-
ray and normalising the image, this is the processing time for the
pre-processing module. The inference time is the time taken to pro-
duce the predicted segmentation map from the loaded image. This
is the inference module processing time and intuitively the bottle-
neck of the source-finding. The following times are both part of
the post-processing module, but separated into labelling time and
cleaning time to demonstrate the limiting step. Labelling time is the
time to cluster pixels in the thresholded segmentation map and label
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Figure 11. Left: Normalised 1.4 GHz Euclidean source counts for sources predicted by ContinUNet, ProFound and PyBDSF, with the true source counts as
given by the SDC1 truth catalogues. Right: Normalised 1.4 GHz Euclidean source counts for source predicted by ContinUNet, ProFound and PyBDSF that have
been matched to a ground truth source, with the true source counts as given by the SDC1 truth catalogues. Only sources predicted in the 1000 hour image from

the 1.4 GHz image are included.
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Figure 12. Distribution of distance in Cartesian space of centers of predicted
sources and the true source they have been matched to. Sources are those that
have been detected by ContinUNet, ProFound and PyBDSF in the 1.4 GHz
1000 hour SDC1 image and have been matched to a true source, the sources
included in this figure are those whose measured flux density is greater than
the 50 background noise.

each source accordingly, it is performed by sCIKIT-LEARN 2 and thus
performance cannot be optimised here without an additional com-
putational approach. Cleaning time is the time to perform cleaning
steps on the sources such as area and flux corrections and noise cuts,
this step has been developed using numpy methods which are al-
ready optimised for high performance computing. The total time is
the sum of all of these steps and demonstrates the end to end time
from parsing the MIGHTEE image to ContinUNet to generating a
cleaned post-processed source catalogue and corresponding segmen-
tation and model maps and residual image. Computation times for
all three hardware environments are given in Table 5.1.

2 https://scikit-learn.org/stable/
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MacBook Pro HPC CPU
Load Time (s) 1.296 0.198
Inference Time (s)  68.769 8.969
Labelling Time (s) 51.426 3.691
Cleaning Time (s) 2.637 0.0142
Total Time (s) 124.158 12.873

Table 2. Computational times for different processes within the ContinUNet
source-finding framework when run on the MIGHTEE low resolution image
on two different computational environments.

The model used for inference was trained using a GPU (NVIDIA
TU104GL [Tesla T4] 2560 cores, 16GB RAM), on a training set of
simulated data of size 744x256x256 for training and 96x256x256
for validation. The model converged after 65 epochs and training
took 6 minutes 14 sec.

6 DISCUSSION

In the following section we will discuss the performance of the
detection methods on the simulated SDC1 data and discuss the results
of applying ContinUNet to real MIGHTEE data. We will then discuss
what the outcomes of both investigations mean for source-finding in
upcoming SKA data releases.

6.1 Source Count Recovery

In terms of precision, recall and F1, none of the tools assessed clearly
outperforms the others at all flux densities, see Fig. 8, 9 and 10 re-
spectively. For precision, PyBDSF and ContinUNet show similar
trends with flux density, but ProFound behaves quite differently, with
precision increasing from lower to higher flux densities. F1 score is
an appropriate metric for source-finding as it takes into account pre-
cision and recall with equal weighting, giving a good representation
of how the models perform in terms of recovering the entirety of the
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Figure 13. Left: distribution of measured flux densities of sources predicted by ContinUNet, ProFound and PyBDSF in the 1.4 GHz 1000 hour SDC1 image.
Right: distribution of measured flux densities of matched sources predicted by ContinUNet, ProFound and PyBDSF in the 1.4 GHz 1000 hour SDC1 image.
The flux densities of the full source population injected into the data set are included for reference, as are the flux densities of true sources whose flux density is
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Figure 14. Distribution of difference between predicted log flux density and
true log flux density of matched sources detected by ContinUNet, ProFound
and PyBDSF in the 1.4 GHz 1000 hour SDC1 image. The sources included
in this figure are those whose measured flux density is greater than the 5o
background noise. A ratio of 1 is a perfect reconstruction of the flux density
of a source.

source population whilst minimising the number of false detections.
For all methods there is a drop off in precision, recall and thus F1
score at the highest flux densities, where we would expect all metrics
to approach 1. This is due to a bias introduced during matching. The
high density of the source population means that we cannot match
using a nearest neighbours algorithm, thus we match using the IOU
score of the predicted sources. However, this introduces bias as IOU
score will decrease with increasing source size as there are more
pixels to accurately match. The larger, more complex and extended
sources are typically found at higher flux densities. This results in a
drop in both precision and recall as sources labelled as false positives
are correctly detected but their segmentation is not good enough to
count as a match.

We see a high number of false positives detected by ProFound
at lower flux densities in Fig. 13, and there is a strong discrepancy
between the predicted and matched ProFound source counts. This
high false positive rate explains the lower precision at lower flux
densities for ProFound in Fig. 8. However, since the majority of
these false positives have a measured flux density below the 5o
noise limit, the drop in precision is also below the noise limit and
therefore is not a significant drawback as these sources can be easily
removed with flux cuts.

InFig. 11 we again see comparable performance between all meth-
ods when recovering the source population above the 5o noise limit.
There is a distinctive drop off at So- for the PyBDSF source counts
and also flux distributions in Fig. 13, due to the 5o flux cut which
is set as default by PyBDSF. PyBDSF in general both predicts and
matches fewer sources than ContinUNet and ProFound and many
fewer at lower flux densities.

6.2 Source Parameter Recovery

The parameters recovered by ContinUNet, ProFound and PyBDSF
are all quite tightly clustered with the ground truth. For matched
sources all methods show a high degree of accuracy for detection
of the source center location, with the majority of predictions being
accurate to within 0.25 pixels as shown in Fig. 12. In Fig. 15 we see
that the matched PyBDSF and ProFound sources have a measured
flux density more tightly aligned with the true flux density compared
with ContinUNet. Figure 14 shows the distribution of predicted log
flux density minus true log flux density, to represent the accuracy of
flux recovery, a perfect flux density measurement would sit at zero
on a distribution. Whilst PyBDSF and ProFound are skewed to an
under prediction of flux density of #20%, ContinUNet under predicts
by =30%. We will be looking into improving the flux recovery of
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Figure 15. 2D histogram of true flux density vs predicted flux density of matched sources detected in the 1.4 GHz 1000 hour SDC1 image. Left to right are
matched sources predicted by ContinUNet, ProFound and PyBDSF. The grey dashed lines represent the 5o~ noise level for the image and the black dashed line

is a one-to-one line. A perfectly recovered flux would sit on this line.
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Figure 16. IOU scores for sources predicted by ContinUNet, ProFound and
PyBDSF in the 1.4 GHz 1000 hour SDC1 image that have been matched to a
true source. An IOU score of 0.5 or above is considered a good segmentation,
a value of 1 is a perfect segmentation. The sources included in this figure are
those whose measured flux density is greater than the 5o background noise.

ContinUNet, but in this paper we are presenting the method for
source-finding as oppose to photometry.

6.3 Source Segmentation

It is difficult to find a suitable metric for measuring segmentation
accuracy as many of the sources cannot be modelled as elliptical.
The extended sources have much more complex morphology, and
although we have made estimates of the source boundaries when
generating our segmentation maps for training, we do not have true
segmentation for these sources and so cannot directly compare the
segmentation of each method. We calculate IOU scores of ellipses
created from the major and minor axes and position angle of the
true sources and the predicted sources detected by each model. The
distribution of IOU scores for matched sources predicted by each
method is shown in 16, which shows superior performance in seg-
mentation for PyBDSF in comparison to the other methods, with
a high median IOU score. However, the median IOU score for all
methods sit comfortably above 0.5, an accepted threshold for good
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segmentation. There may be systematic bias that favours the per-
formance of PyBDSF due to the fact that the data set is simulated
by injecting Gaussian blobs into the image and PyBDSF performs
source-finding by fitting Gaussian models to sources. It is clear from
Fig. 16 that PyBDSF performs well at characterising such sources.
Whilst majority of the sources in the SDC1 data set are compact
(or unresolved) sources that are well characterised by a Gaussian
model, this approach is not appropriate for modelling extended or
more complex sources, which we see evidence for in the real data
experiments in Section 6.4.

6.4 Real Data Application

The SDCI1 data set may not be representative of real data and thus
it is important to see how our model performs in a real data case.
The MIGHTEE data is a suitable representation of SKA data as
MeerKat is a precursor telescope to SKA and the data are rich, densely
populated with sources, and have a large dynamic range in terms of
flux density and source complexity. We applied ContinUNet to the
MIGHTEE Early Science data without retraining. We performed
source-finding on MIGHTEE on a laptop in ~2 minutes, the only
modification required was changing the threshold method. Figure
17 shows the MIGHTEE image on the left and the residuals after
removing the contribution from the detected sources on the right.
The source contribution has been well characterised and the main
residuals are from faint extended emission of large radio galaxies.
ContinUNet transferred quickly and easily to real data and showed
impressive performance at segmenting large extended sources. A
closer view of this segmentation is given in Fig. 18, which shows
the segmentation map and the model map for a subsection of the
MIGHTEE image. The extended sources shown in this figure exceed
the size limit of extended sources present in the training set, whose
major or minor axes are smaller than 100 pixels. The largest source
detected by ContinUNet in the MIGHTEE image has a major axis
of ~170 pixels. The fact that ContinUNet was able to recover these
sources is extremely promising as it suggests that the model has
learned the statistical and morphological features of radio sources,
thus we can perform segmentation that is invariant to scaling changes.
In the future we intend to supplement the training data with real data
to improve robustness to variations in scale and SNR.
Source-finding was performed on the MIGHTEE Early Science
data COSMOS field using PyBDSF (Hale et al. 2022), which pro-
duced a catalogue of Gaussian components where one or more was
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Figure 17. Left: MIGHTEE continuum image. Right: Residuals after subtraction of the ContinUNet model map. The residuals are quite clean of source
contributions, with the only contributions left behind being from the GRGs and extended emission from large, bright complex AGN.
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Figure 18. Left: Sub section of the MIGTHEE continuum image taken from the center of size 1500x 1500 pixels. Middle: Corresponding segmentation map of
sources predicted by ContinUNet, including sources below 5o flux cutoff. Right: Model map of sub section produced by multiplying the segmentation map with
the input data image. This central region of the FoV suffers the greatest confusion, but ContinUNet is still able to associate components of complex extended

sources as can be seen in the highlighted teal box.

associated with a source in the image. Further processing on this cat-
alogue was performed and the components were associated by hand
through manual intervention and cross-matching with optical and
near-infrared data (Whittam et al. 2023). Both of the sources shown
in Fig. 19 and Fig. 20 can be found in the published catalogue. Figure
19 shows a near perfect segmentation of the bent tail radio galaxy by
ContinUNet. However, this source was characterised by 17 PyBDSF
components as stated in the manually cross-matched catalogue. Ex-
amples of complex extended sources are extremely common in the
MIGHTEE image, and can be seen in Fig. 17 (left); such sources are

not well characterised by Gaussian components. Considering that
the MIGHTEE field is a fraction of the FoV of SKA, the approach
of manual intervention cannot scale practically to next generation
surveys, particularly considering expected frequency of such cases
expected for SKA. Figure 20 shows another example of an extended
radio galaxy. This source is actually two radio galaxies, but cannot
be separated with the MIGHTEE data alone; cross-matching with
higher frequency radio data allowed the two sources to be separated
(Whittam et al. 2023). The top right hand tail is the second galaxy
that is not associated with the main double radio galaxy in the centre

RASTI 000, 1-17 (2023)



14  H. Stewart et al.

2°2120" |

00"

Declination

2040" |

20"

10"00™30° 29° 28° 27° 26° 25°

Right Ascension

Figure 19. Cutout of extended source detected using ContinUNet with seg-
mentation boundaries taken directly from the segmentation map over-plotted
in teal. In the cross matched catalogue this source contained multiple PyBDSF
components, Neomp = 17 (Whittam et al. 2023). ContinUNet has segmented
the shape of this source whilst correctly associating all of the clear compo-
nents as one source.
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Figure 20. Cutout of extended source detected using ContinUNet with seg-
mentation boundaries taken directly from the segmentation map over-plotted
in teal. In the cross matched catalogue this source contained multiple PyBDSF
components, Neomp = 47 (Whittam et al. 2023). ContinUNet has produced
a segmented source that includes the multiple components visible with little
connecting emission.

of Fig. 20. This main galaxy is comprised of 47 PyBDSF compo-
nents, which had to be manually associated. There is an obvious
reduction in overhead in the case where one galaxy must be split into
two over the need to associate 47 components. These two examples
demonstrate clearly the improved automation of the source-finding
process in SKA-like data with ContinUNet.

Figure 21 shows the Euclidean normalised source counts for
sources detected in the MIGHTEE image by ContinUNet, the
PyBDSF component catalogue (Hale et al. 2022) and the manually
cross-matched source catalogue (Whittam et al. 2023). The Conti-
nUNet source counts sit below those of the component catalogue,
which we expect as we have already seen ContinUNet correctly as-
sociate source components which are unassociated in the PyBDSF
catalogue. This is because ContinUNet is able to associate compo-
nents with no matching required by eye, as the model has learnt
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Figure 21. Euclidean normalised source counts for MIGHTEE continuum low
resolution image at 1.4 GHz, for ContinUNet detected sources, PyBDSF com-
ponents (Hale et al. 2022) and cross matched sources (Whittam et al. 2023).
For the ContinUNet detected sources, we include only predicted sources de-
tected at a flux density above 5o~ where o is the confusion limited noise,
since meaningful science cannot be inferred from sources detected below the
confusion limit.

to segment radio sources and associate components simultaneously.
This is demonstrated further in Fig. 21, where the brightest end of
the source distribution is not accounted for by the PyBDSF compo-
nent catalogue, but is by the cross-matched source catalogue. These
brightest sources typically contain more than one component, which
will be represented lower down on the flux density scale than the flux
contribution from the entire source. The source counts from Con-
tinUNet more closely match those of the cross-matched catalogue,
particularly at high flux densities where components were handled
automatically.

In addition to the demonstrated improved automation for source-
finding in MIGHTEE, we have also shown the method to be extremely
fast. Table 5.1 shows that ContinUNet performs source-finding on
the MIGHTEE low resolution image, with end-to-end processing
taking <13 s and can be run on a personal machine. This is because
inference is fast in comparison to the training, which only has to
be performed once and carries the majority of the computational
complexity of this method. We have not performed benchmarking
at this stage on the MIGHTEE data, but we know that PyBDSF fits
Gaussian components to each source, which is a computationally
complex and expensive method. We also know that ProFound has
memory limitations, and it cannot be used for source-finding in the
MIGHTEE image of an area of 1.62 deg2 on a machine with 16GB
RAM, posing a significant draw back for SKA data whose images
will be ~30,000 times this size.

Performing source-finding in MIGHTEE with ContinUNet
showed that our method is able to associate source components based
on the intrinsic source segmentation learned in the latent space of
the network, and is able to do so without the need for retraining or
substantial parameter tuning. The end-to-end source-finding is fast
and scalable and requires significantly less manual intervention than
one of the current state-of-the-art methods.



7 CONCLUSIONS

We investigated a new ML driven source-finding method, Contin-
UNet, in preparation for the data produced by the next generation
of radio interferometers such as the SKA and compared its perfor-
mance to the state-of-the-art source-finding methods PyBDSF and
ProFound. ContinUNet was trained and tested on the simulated SDC1
radio continuum data. We performed rigorous testing of all methods
on the SDC1 data set, and presented our results for the 1.4 GHz 1000
hour image. ContinUNet performed comparably to the state-of-the-
art on all metrics in the simulated test data. ContinUNet transferred to
real data with no retraining required, and the only tuning performed
was to change the thresholding method. When performing source-
finding on real data, ContinUNet handled the increased dynamic
range of the MIGHTEE data robustly, and demonstrated an ability to
associate components of extended sources with no post-processing
required. Such sources have been split into multiple components by
PyBDSF and are non trivial to associate through manual intervention.
Perhaps the most promising outcome is the computational speed and
scaling potential; ContinUNet can process an image of one square
degree in less than 13 s when run on a supercomputer.

Improvements to the model will be made by improving the seg-
mentation maps used for training and increasing the training set size.
However, this work serves as a proof of concept that U-Net can be
used for source-finding in SKA like data, and that ContinUNet is a
promising method that can and should be used for source-finding in
precursor data sets such as the MIGHTEE survey.

Currently the model only performs source-finding and no classi-
fication of the predicted sources. In the future we would like to add
interpretability to the latent space of the model in order to extract
source classification as part of the source-finding method. These
classifications could include distinctions between FR I and FR II
galaxies, compact and extended sources or galaxy morphology such
as lopsided or bent tail, depending on the science context of the
application of ContinUNet.

Having the ability to perform extremely fast source-finding to a
comparative if not improved standard to the state-of-the-art methods,
whilst considering computational limitations, that can also reduce the
expert labour required in post-processing is particularly important
for the upcoming SKA science goals. ContinUNet has been designed
to perform source-finding out-of-the-box with no parameter tuning.
The positive outcomes of improved speed and automation of source-
finding in large and complex data sets will prove invaluable as we
move into the SKA era.
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